ICSE - Class IX Mathematics - M.L. Agarwal Solution

Chapter 2 : Compound Interest

Exercise 2.1

1. Find the amount and the compound interest on ₹ 8000 at 5% per annum for 2 years.

Solution:

It is given that
Principal = ₹ 8000
Rate of interest $=5 \%$ p.a.
We know that
Interest for the first year = Prt/100
Substituting the values
$=(8000 \times 5 \times 1) / 100$
= ₹ 400
So the amount for the first year or principal for the second year $=8000+$ $400=₹ 8400$

Here
Interest for the second year $=(8400 \times 5 \times 1) / 100$
So we get
= ₹ 420
We know that
Amount after the second year $=8400+420$
= ₹ 8820
Total compound interest $=8820+8000$
= ₹ 820
2. A man invests ₹ 46875 at 4% per annum compound interest for 3 years. Calculate:
(i) the amount standing to his credit at the end of the second year.
(ii) the interest for the third year.
(iii) the interest for the first year.

Solution:

It is given that
Principal $=$ ₹ 46875
Rate of interest $=4 \%$ p.a.
(i) Interest for the first year $=$ Prt/100

Substituting the values
$=(46875 \times 4 \times 1) / 100$
= ₹ 1875
So the amount after first year or principal for the second year $=46875+$ 1875 = ₹ 48750
Here
Interest for the second year $=(48750 \times 4 \times 1) / 100$
So we get
= ₹ 1950
(ii) We know that

Amount at the end of second year $=48750+1950$
= ₹ 50700
(iii) Interest for the third year $=(50700 \times 4 \times 1) / 100=$ ₹ 2028
3. Calculate the compound interest for the second year on ₹ 8000 for three years at 10\% p.a.
Also find the sum due at the end of third year.

Solution:

It is given that
Principal = ₹ 8000
Rate of interest $=10 \%$ p.a.
We know that
Interest for the first year = Prt/100

NEET | JEE MAIN | WBJEE | ISC | ICSE | CBSE

Substituting the values
$=(8000 \times 10 \times 1) / 100$
= ₹ 800
So the amount after the first year or principal for the second year $=8000+$ $800=₹ 8800$
(i) Interest for the second year $=(8800 \times 10 \times 1) / 100$
= ₹ 880
So the amount after second year or principal for the third year $=8800+880$ = ₹ 9680
Interest for the third year $=(9680 \times 10 \times 1) / 100$
= ₹ 968
(ii) Amount due at the end of the third year $=9680+968$
= ₹ 10648
4. Ramesh invests ₹ 12800 for three years at the rate of 10% per annum compound interest.
Find:
(i) the sum due to Ramesh at the end of the first year.
(ii) the interest he earns for the second year.
(iii) the total amount due to him at the end of three years.

Solution:

It is given that
Principal = ₹ 12800
Rate of interest $=10 \%$ p.a.
(i) We know that

Interest for the first year $=(12800 \times 10 \times 1) / 100$
= ₹ 1280
So the sum due at the end of first year $=12800+1280$
= ₹ 14080
(ii) Principal for second year $=₹ 14080$

So the interest for the second year $=(14080 \times 10 \times 1) / 100$
= ₹ 1408
(iii) We know that

Sum due at the end of second year $=14080+1408$
= ₹ 15488
Here
Principal for third year $=₹ 15488$
Interest for the third year $=(15488 \times 10 \times 1) / 100$
= ₹ 1548.80
So the total amount due to him at the end of third year $=15488+1548.80$
= ₹ 17036.80
5. The simple interest on a sum of money for 2 years at 12% per annum is ₹ 1380. Find:
(i) the sum of money.
(ii) the compound interest on this sum for one year payable half-yearly at the same rate.

Solution:

It is given that
Simple Interest (SI) = ₹ 1380
Rate of interest $(R)=12 \%$ p.a.
Period (T) $=2$ years
(i) We know that

Sum $(P)=(S I \times 100) /(R \times T)$
Substituting the values
$=(1380 \times 100) /(12 \times 2)$
= ₹ 5750
(ii) Here

Principal (P) = ₹ 5750
Rate of interest $(R)=12 \%$ p.a. or 6% half-yearly
Period $(\mathrm{n})=1$ year -2 half years

So we get
Amount (A) $=P(1+R / 100)^{n}$
Substituting the values
$=5750(1+6 / 100)^{2}$
By further calculation
$=5750 \times(53 / 50)^{2}$
So we get
$=5750 \times 53 / 50 \times 53 / 50$
$=$ ₹ 6460.70
Here
Compound Interest $=\mathrm{A}-\mathrm{P}$
Substituting the values
$=6460.70-5750$
= ₹ 710.70
6. A person invests ₹ 10000 for two years at a certain rate of interest, compounded annually. At the end of one year this sum amounts to ₹ 11200 . Calculate:
(i) the rate of interest per annum.
(ii) the amount at the end of second year.

Solution:

It is given that
Principal $(P)=₹ 10,000$
Period (T) = 1 year
Sum amount (A) = ₹ 11,200
Rate of interest $=$?
(i) We know that

Interest $(\mathrm{I})=11200-10000=$ ₹ 1200
So the rate of interest
$R=(I \times 100) /(P \times T)$

Substituting the values
$R=(1200 \times 100) /(10000 \times 1)$
So we get
$R=12 \%$ p.a.
Therefore, the rate of interest per annum is 12% p.a.
(ii) We know that

Period (T) $=2$ years
Rate of interest (R) = 12\% p.a.
Here
$A=P(1+R / 100)^{t}$
Substituting the values
$A=10000(1+12 / 100)^{2}$
By further calculation
$A=10000(28 / 25)^{2}$
We can write it as
$A=10000 \times 28 / 25 \times 28 / 25$
So we get
$A=16 \times 28 \times 28$
$A=₹ 12544$
Therefore, the amount at the end of second year is ₹ 12544 .
7. Mr. Lalit invested ₹ 75000 at a certain rate of interest, compounded annually for two years. At the end of first year it amounts to ₹ 5325. Calculate
(i) the rate of interest.
(ii) the amount at the end of second year, to the nearest rupee.

Solution:

It is given that
Investment of Mr. Lalit = ₹ 5000
Period (n) $=2$ years
(i) We know that

Amount after one year $=₹ 5325$
So the interest for the first year $=A-P$
Substituting the values
$=5325-5000$
$=₹ 325$
Here
Rate $=(\mathrm{SI} \times 100) /(\mathrm{P} \times \mathrm{T})$
Substituting the values
$=(325 \times 100) /(5000 \times 1)$
So we get
$=13 / 2$
$=6.5 \%$ p.a.
(ii) We know that

Interest for the second year $=(5325 \times 13 \times 1) /(100 \times 2)$
By further calculation
$=(213 \times 13) /(4 \times 2)$
So we get
$=2769 / 8$
= ₹ 346.12
So the amount after second year $=5325+346.12$
We get
= ₹ 5671.12
$=₹ 5671$ (to the nearest rupee)
8. A man invests ₹ 5000 for three years at a certain rate of interest, compounded annually. At the end of one year it amounts to ₹ 5600. Calculate:
(i) the rate of interest per annum
(ii) the interest accrued in the second year.
(iii) the amount at the end of the third year.

Solution:

It is given that
Principal = ₹ 5000
Consider r\% p.a. as the rate of interest
(i) We know that

At the end of one year
Interest = Prt/100
Substituting the values
$=(5000 \times r \times 1) / 100$
$=50 \mathrm{r}$
Here
Amount $=5000+50 r$
We can write it as
$5000+50 r=5600$
By further calculation
$50 r=5600-5000=600$
So we get
$r=600 / 50=12$
Hence, the rate of interest is 12% p.a.
(ii) We know that

Interest for the second year $=(5600 \times 12 \times 1) / 100$
= ₹ 672
So the amount at the end of second year $=5600+672$
= ₹ 6272
(iii) We know that

Interest for the third year $=(6272 \times 12 \times 1) / 100$
= ₹ 752.64
So the amount after third year $=6272+752.64$
= ₹ 7024.64
9. Find the amount and the compound interest on ₹ 2000 at 10% p.a. for 2 years, compounded annually.

Solution:

It is given that
Principal (P) = ₹ 2000
Rate of interest (r) $=10 \%$ p.a.
Period (n) $=21 / 2$ years
We know that
Amount $=\mathrm{P}(1+\mathrm{r} / 100)^{\mathrm{n}}$
Substituting the values
$=2000(1+10 / 100)^{2}(1+10 /(2 \times 100))$
By further calculation
$=2000 \times 11 / 10 \times 11 / 10 \times 21 / 20$
So we get
= ₹ 2541
Here
Interest = A - P
Substituting the values
= 2541-2000
= ₹ 541
10. Find the amount and the compound interest on ₹ 50000 for $11 / 2$ years at 8% per annum, the interest being compounded semi-annually.

Solution:

It is given that
Principal (P) = ₹ 50000
Rate of interest (r) $=8 \%$ p.a. $=4 \%$ semi-annually
Period $(n)=11 / 2$ years $=3$ semi-annually
We know that
Amount $=P(1+r / 100)^{n}$

Substituting the values
$=50000(1+4 / 100)^{3}$
By further calculation
$=50000(26 / 25)^{3}$
$=50000 \times 26 / 25 \times 26 / 25 \times 26 / 25$
= ₹ 56243.20
Here
Compound Interest $=\mathrm{A}-\mathrm{P}$
Substituting the values
= 56243.20-50000
= ₹ 6243.20
11. Calculate the amount and the compound interest on ₹ 5000 in 2 years when the rate of interest for successive years is 6% and 8%, respectively.

Solution:

It is given that
Principal = ₹ 5000
Period $=2$ years
Rate of interest for the first year $=6 \%$
Rate of interest for the second year $=8 \%$
We know that
Amount for two years $=P(1+r / 100)^{n}$
Substituting the values
$=5000(1+6 / 100)(1+8 / 100)$
By further calculation
$=5000 \times 53 / 50 \times 27 / 25$
= ₹ 5724
Here
Interest = A - P
Substituting the values
$=5724-5000$
= ₹ 724
12. Calculate the amount and the compound interest on ₹ 17000 in 3 years when the rate of interest for successive years is $10 \%, 10 \%$ and 14%, respectively.

Solution:

It is given that
Principal =₹ 17000
Period $=3$ years
Rate of interest for 3 successive years $=10 \%, 10 \%$ and 14%
We know that
Amount after 3 years $=P(1+r / 100)^{n}$
Substituting the values
$=17000(1+10 / 100)(1+10 / 100)(1+14 / 100)$
By further calculation
$=17000 \times 11 / 10 \times 11 / 10 \times 57 / 50$
$=$ ₹ 23449.80
Here
Amount of compound interest $=\mathrm{A}-\mathrm{P}$
Substituting the values
= 23449.80-17000
= ₹ 6449.80
13. A sum of ₹ 9600 is invested for 3 years at 10% per annum at compound interest.
(i) What is the sum due at the end of the first year?
(ii) What is the sum due at the end of the second year?
(iii) Find the compound interest earned in 2 years.
(iv) Find the difference between the answers in (ii) and (i) and find the interest on this sum for one year.
(v) Hence, write down the compound interest for the third year.

NEET | JEE MAIN | WBJEE | ISC | ICSE | CBSE

Solution:

It is given that
Principal = ₹ 9600
Rate of interest $=10 \%$ p.a.
Period $=3$ years
We know that
Interest for the first year $=$ Prt/100
Substituting the values
$=(9600 \times 10 \times 1) / 100$
= ₹ 960
(i) Amount after one year $=9600-960=₹ 10560$

So the principal for the second year $=₹ 10560$
Here the interest for the second year $=(10560 \times 10 \times 1) / 100$
= ₹ 1056
(ii) Amount after two years $=10560+1056=₹ 11616$
(iii) Compound interest earned in 2 years $=960+10560=₹ 2016$
(iv) Difference between the answers in (ii) and (i) $=11616-10560=$ ₹ 1056

We know that
Interest on ₹ 1056 for 1 year at the rate of 10% p.a. $=(1056 \times 10 \times 1) / 100$
= ₹ 105.60
(v) Here

Principal for the third year = ₹ 11616
So the interest for the third year $=(11616 \times 10 \times 1) / 100$
= ₹ 1161.60
14. The simple interest on a certain sum of money for 2 years at 10% p.a. is ₹ 1600. Find the amount due and the compound interest on this sum of money at the same rate after 3 years, interest being reckoned annually.

Solution:

It is given that

Period $=2$ years
Rate $=10 \%$ p.a.
We know that
Sum $=(\mathrm{SI} \times 100) /(r \times n)$
Substituting the values
$=(1600 \times 100) /(10 \times 2)$
$=₹ 8000$
Here
Amount after 3 years $=P(1+r / 100)^{n}$
Substituting the values
$=8000(1+10 / 100)^{3}$
By further calculation
$=8000 \times 11 / 10 \times 11 / 10 \times 11 / 10$
= ₹ 10648
So the compound interest $=\mathrm{A}-\mathrm{P}$
Substituting the values
= 10648-8000
= ₹ 2648
15. Vikram borrowed ₹ 20000 from a bank at 10% per annum simple interest. He lent it to his friend Venkat at the same rate but compounded annually. Find his gain after $21 / 2$ years.

Solution:

First case-
Principal = ₹ 20000
Rate $=10 \%$ p.a.
Period $=21 / 2=5 / 2$ years
We know that
Simple interest $=$ Prt/100
Substituting the values
$=(20000 \times 10 \times 5) /(100 \times 2)$
= ₹ 5000
Second case-
Principal $=$ ₹ 20000
Rate $=10 \%$ p.a.
Period $=21 / 2$ years at compound interest
We know that
Amount $=P(1+r / 100)^{n}$
Substituting the values
$=20000(1+10 / 100)^{2}(1+10 /(2 \times 100))^{2}$
By further calculation
$=20000 \times 11 / 10 \times 11 / 10 \times 21 / 20$
= ₹ 25410
Here
Compound Interest $=\mathrm{A}-\mathrm{P}$
Substituting the values
= 25410-20000
= ₹ 5410
So his gain after 2 years $=\mathrm{Cl}-\mathrm{SI}$
We get
$=5410-5000$
= ₹ 410
16. A man borrows ₹ 6000 at 5% compound interest. If he repays ₹ 1200 at the end of each year, find the amount outstanding at the beginning of the third year.

Solution:

It is given that
Principal = ₹ 6000
Rate of interest $=5 \%$ p.a.

NEET | JEE MAIN | WBJEE | ISC | ICSE | CBSE

We know that
Interest for the first year $=$ Prt/100
Substituting the values
$=(6000 \times 5 \times 1) / 100$
= ₹ 300
So the amount after one year $=6000+300=₹ 6300$
Principal for the second year $=₹ 6300$
Amount paid = ₹ 1200
So the balance $=6300-1200=₹ 5100$
Here
Interest for the second year $=(5100 \times 5 \times 1) / 100=₹ 255$
Amount for the second year $=5100+255=₹ 5355$
Amount paid $=$ ₹ 1200
So the balance $=5355-1200=₹ 4155$
17. Mr. Dubey borrows ₹ 100000 from State Bank of India at 11\% per annum compound interest. He repays ₹ 41000 at the end of first year and ₹ 47700 at the end of second year. Find the amount outstanding at the beginning of the third year.

Solution:

It is given that
Borrowed money (P) = ₹ 100000
Rate $=11 \%$ p.a.
Time $=1$ year
We know that
Amount after first year $=$ Prt/100
Substituting the values
$=(100000 \times 11 \times 1) / 100$
By further calculation
$=100000+11000$
= ₹ 111000

Amount paid at the end of first year $=₹ 41000$
So the principal for second year $=111000-41000$
$=₹ 70000$
We know that
Amount after second year $=P+(70000 \times 11) / 100$
By further calculation
$=70000+700$
= ₹ 77700
So the amount paid at the end of second year =₹ 47700
Here the amount outstanding at the beginning year $=77700-47700$
= ₹ 30000
18. Jaya borrowed ₹ 50000 for 2 years. The rates of interest for two successive years are 12% and 15% respectively. She repays ₹ 33000 at the end of first year. Find the amount she must pay at the end of second year to clear her debt.

Solution:

It is given that
Amount borrowed by Jaya $=₹ 50000$
Period (n) $=2$ years
Rate of interest for two successive years are 12% and 15% respectively
We know that
Interest for the first year $=$ Prt/100
Substituting the values
$=(50000 \times 12 \times 1) / 100$
= ₹ 6000
So the amount after first year $=50000+6000=₹ 56000$
Amount repaid $=₹ 33000$
Here
Balance amount for the second year $=56000-33000=₹ 23000$
Rate $=15 \%$

So the interest for the second year $=(230000 \times 15 \times 1) / 100$
= ₹ 3450
Amount paid after second year $=23000+3450=₹ 26450$

Exercise 2.2

1. Find the amount and the compound interest on ₹ 5000 for 2 years at 6% per annum, interest payable yearly.

Solution:

It is given that
Principal (P) =₹ 5000
Rate of interest (r) = 6\% p.a.
Period (n) $=2$ years
We know that
Amount $=P(1+r / 100)^{n}$
Substituting the values
$=5000(1+6 / 100)^{2}$
By further calculation
$=5000 \times 53 / 50 \times 53 / 50$
= ₹ 5618
Here
$C I=A-P$
Substituting the values
$=5618-5000$
= ₹ 618
2. Find the amount and the compound interest on ₹ 8000 for 4 years at 10\% per annum interest reckoned yearly.

Solution:

It is given that
Principal (P) = ₹ 8000
Rate of interest (r) = 10\% p.a.

Period $(\mathrm{n})=4$ years
We know that
Amount $=P(1+r / 100)^{n}$
Substituting the values
$=8000(1+10 / 100)^{4}$
By further calculation
$=8000 \times 11 / 10 \times 11 / 10 \times 11 / 10 \times 11 / 10$
$=₹ 11712.80$
Here
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
$=11712.80-8000$
= ₹ 3712.80
3. If the interest is compounded half yearly, calculate the amount when the principal is ₹ 7400, the rate of interest is 5% and the duration is one year.

Solution:
It is given that
Principal (P) =₹ 7400
Rate of interest $(r)=5 \%$
Period (n) = 1 year
We know that
$A=P(1+r /(2 \times 100))^{2 \times n}$
Substituting the values
$=7400(1+5 / 200)^{2}$
By further calculation
$=7400 \times 205 / 200 \times 205 / 200$
= ₹ 7774.63
4. Find the amount and the compound interest on ₹ 5000 at 10% p.a. for $11 / 2$ years, compound interest reckoned semi-annually.

Solution:

It is given that
Principal (P) = ₹ 5000
Rate of interest $=10 \%$ p.a. or 5% half-yearly
Period $(n)=1 \frac{1}{2}$ years or 3 half-years
We know that
$A=P(1+r / 100)^{n}$
Substituting the values
$=5000(1+5 / 100)^{3}$
By further calculation
$=5000 \times 21 / 20 \times 21 / 20 \times 21 / 20$
$=$ ₹ 5788.12
Here
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
$=5788.12$ - 5000
= ₹ 788.12
5. Find the amount and the compound interest on ₹ 100000 compounded quarterly for 9 months at the rate of 4% p.a.

Solution:

It is given that
Principal (P) = ₹ 100000
Rate of interest $=4 \%$ p.a. or 1% quarterly
Period (n) $=9$ months or 3 quarters
We know that
$A=P(1+r / 100)^{n}$
Substituting the values
$=100000(1+1 / 100)^{3}$
By further calculation
$=100000 \times 101 / 100 \times 101 / 100 \times 101 / 100$
$=$ ₹ 103030.10
Here
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
= 103030.10-100000
= ₹ 3030.10
6. Find the difference between Cl and SI on sum of ₹ 4800 for 2 years at 5% per annum payable yearly.

Solution:

It is given that
Principal (P) = ₹ 4800
Rate of interest (r) $=5 \%$ p.a.
Period (n) $=2$ years
We know that
SI = Prt/100
Substituting the values
$=(4800 \times 5 \times 2) / 100$
= ₹ 480
If compounded yearly
$\mathrm{A}=\mathrm{P}(1+\mathrm{r} / 100)^{\mathrm{n}}$
Substituting the values
$=4800(1+5 / 100)^{2}$
By further calculation
$=4800 \times 21 / 20 \times 21 / 20$
= ₹ 5292
Here
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
= 5292 - 4800
= ₹ 492
So the difference between CI and $\mathrm{SI}=492-480=$ ₹ 12
7. Find the difference between the simple interest and compound interest on ₹ 2500 for 2 years at 4% per annum, compound interest being reckoned semiannually.

Solution:

It is given that
Principal (P) = ₹ 2500
Rate of interest $(r)=4 \%$ p.a. or 2% half-yearly
Period $(n)=2$ years or 4 half-years
We know that
SI $=$ Prt/100
Substituting the values
$=(2500 \times 4 \times 2) / 100$
= ₹ 200
If compounded semi-annually
$A=P(1+r / 100)^{n}$
Substituting the values
$=2500(1+2 / 100)^{4}$
By further calculation
$=2500 \times 51 / 50 \times 51 / 50 \times 51 / 50 \times 51 / 50$
$=$ ₹ 2706.08
We know that
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
$=2706.08$ - 2500
= ₹ 206.08
So the difference between Cl and $\mathrm{SI}=206.08$ - $200=$ ₹ 6.08
8. Find the amount and the compound interest on ₹ 2000 in 2 years if the rate is 4% for the first year and 3% for the second year.

Solution:

It is given that
Principal (P) = ₹ 2000
Rate of interest $=4 \%$ on the first year and 3% for the second year
Period (n) $=2$ years
We know that
Amount $=\mathrm{P}(1+\mathrm{r} / 100)^{\mathrm{n}}$
Substituting the values
$=2000(1+4 / 100)(1+3 / 100)$
By further calculation
$=2000 \times 26 / 25 \times 103 / 100$
$=₹ 2142.40$
Here
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
$=2142.40-2000$
= ₹ 142.40
9. Find the compound interest on ₹ 3125 for 3 years if the rates of interest for the first, second and third year are respectively $4 \%, 5 \%$ and 6% per annum.

Solution:

It is given that
Principal (P) = ₹ 3125
Rate of interest for continuous $=4 \%, 5 \%$ and 6%
Period (n) = 3 years
We know that
Amount $=P(1+r / 100)^{n}$
Substituting the values

NEET | JEE MAIN | WBJEE | ISC | ICSE | CBSE
$=3125(1+4 / 100)(1+5 / 100)(1+6 / 100)$
By further calculation
$=3125 \times 26 / 25 \times 21 / 50 \times 53 / 50$
= ₹ 3617.25
Here
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
$=3617.25-3125$
$=₹ 492.25$
10. What sum of money will amount to ₹ 9261 in 3 years at 5\% per annum compound interest?

Solution:

It is given that
Amount (A) = ₹ 9261
Rate of interest (r) = 5\% per annum
Period (n) $=3$ years
We know that
$A=P(1+r / 100)^{n}$
Substituting the values
$9261=P(1+5 / 100)^{3}$
By further calculation
$9261=P(21 / 20)^{3}$
So we get
$P=(9261 \times 20 \times 20 \times 20) /(21 \times 21 \times 21)$
$P=₹ 8000$
Therefore, the sum of money is ₹ 8000 .
11. What sum invested at 4\% per annum compounded semi-annually amounts to ₹ 7803 at the end of one year?
Solution:

It is given that
Amount (A) = ₹ 7803
Rate of interest $(r)=4 \%$ p.a. or 2% semi-annually
Period $(\mathrm{n})=1$ year or 2 half years
We know that
A $=P(1+r / 100)^{n}$
Substituting the values
$=7803+(1+2 / 100)^{2}$
By further calculation
$=7803+(51 / 20)^{2}$
$=7803 \times 50 / 51 \times 50 / 51$
$=$ ₹ 7500
Hence, the principal is ₹ 7500 .
12. What sum invested for $11 / 2$ years compounded half yearly at the rate of 4% p.a. will amount to ₹132651?
Solution:
It is given that
Amount (A) = ₹ 132651
Rate of interest $(r)=4 \%$ p.a. or 2% half yearly
Period $(n)=1 \frac{112}{2}$ years or 3 half years
We know that
$\mathrm{A}=\mathrm{P}(1+\mathrm{r} / 100)^{\mathrm{n}}$
It can be written as

$$
P=A \div(1+r / 100)^{n}
$$

Substituting the values
$=132651 \div(1+2 / 100)^{3}$
By further calculation
$=132651 \div(51 / 50)^{3}$
So we get
$=132651 \times(50 / 51)^{3}$
$=132651 \times 50 / 51 \times 50 / 51 \times 50 / 51$
= ₹ 125000
Hence, the principal amount is ₹ 125000 .
13. On what sum will the compound interest for 2 years at 4% per annum be ₹ 5712?

Solution:
It is given that
$\mathrm{Cl}=₹ 5712$
Rate of interest (r) $=4 \%$ p.a.
Period (n) $=2$ years
We know that
$A=P(1+r / 100)^{n}$
It can be written as
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}=\mathrm{P}(1+\mathrm{r} / 100)^{\mathrm{n}}-\mathrm{P}$
$=P\left[(1+r / 100)^{n}-1\right]$
Substituting the values
$5712=P\left[(1+4 / 100)^{2}-1\right]$
$=P\left[(26 / 25)^{2}-1\right]$
By further calculation
$=P[676 / 625-1]$
Taking LCM
$=P[(676-625) / 625]$
$=P \times 51 / 625$
Here
$P=5712 \times 625 / 51$
$=112 \times 625$
$=₹ 70000$
Hence, the principal amount is ₹ 70000.
14. A man invests ₹ 1200 for two years at compound interest. After one year the money amounts to ₹ 1275 . Find the interest for the second year correct to the nearest rupee.

Solution:

It is given that
Principal = ₹ 1200
After one year, the amount $=₹ 1275$
So the interest for one year $=1275-1200=₹ 75$
We know that
Rate of interest $=(\mathrm{SI} \times 100) /(\mathrm{P} \times \mathrm{t})$
Substituting the values
$=(75 \times 100) /(1200 \times 1)$
By further calculation
$=75 / 12$
$=25 / 4$
$=6 \frac{1}{4} \%$ p.a.
Here
Interest for the second year on ₹ 1275 at the rate of 25/4\% = Prt/100
Substituting the values
$=(1275 \times 25 \times 1) /(100 \times 4)$
By further calculation
$=1275 / 16$
= ₹ 79.70
$=₹ 80$
15. At what rate percent per annum compound interest will ₹ 2304 amount to ₹ 2500 in 2 years?
Solution:
It is given that
Amount $=₹ 2500$
Principal = ₹ 2304

NEET | JEE MAIN | WBJEE | ISC | ICSE | CBSE

Period (n) $=2$ years
Consider r\% p.a. as the rate of interest
We know that
$A=P(1+r / 100)^{n}$
It can be written as
$(1+r / 100)^{n}=A / P$
Substituting the values
$(1+r / 100)^{2}=2500 / 2304$
By further calculation
$(1+r / 100)^{2}=625 / 576=(25 / 24)^{2}$
So we get
$1+r / 100=25 / 24$
$r / 100=25 / 24-1$
Taking LCM
$r=100 / 24=25 / 6=41 / 6$
Hence, the rate of interest is $41 / 6 \%$ p.a.
16. A sum compounded annually becomes 25/16 time of itself in two years. Determine the rate of interest per annum.

Solution:

Consider sum (P) $=x$
Amount (A) $=25 / 16 x$
Period (n) $=2$ years
We know that

$$
A / P=(1+r / 100)^{n}
$$

Substituting the values
$25 x / 16 x=(1+r / 100)^{2}$
By further calculation
$(1+r / 100)^{2}=(5 / 4)^{2}$
So we get
$1+r / 100=5 / 4$
$r / 100=5 / 4-1 / 1=1 / 4$
By cross multiplication
$r=100 \times 1 / 4=25$
Hence, the rate of interest is 25% p.a.
17. At what rate percent will ₹ 2000 amount to ₹ 2315.25 in 3 years at compound interest?

Solution:

It is given that
Principal (P) = ₹ 2000
Amount (A) = ₹ 2315.25
Period (n) $=3$ years
Consider r\% p.a. as the rate of interest
We know that

$$
A / P=(1+r / 100)^{n}
$$

Substituting the values
$2315.25 / 2000=(1+r / 100)^{3}$
By further calculation

$$
(1+r / 100)^{3}=231525 /(100 \times 2000)=9261 / 8000=(21 / 20)^{3}
$$

So we get

$$
1+r / 100=21 / 20
$$

It can be written as
$r / 100=21 / 20-1=1 / 20$
$r=100 / 20=5$
Hence, the rate of interest is 5% p.a.
18. If ₹ 40000 amounts to ₹ 48620.25 in 2 years, compound interest payable half-yearly, find the rate of interest per annum.

Solution:

It is given that

NEET | JEE MAIN | WBJEE | ISC | ICSE | CBSE

Principal $(P)=₹ 40000$
Amount (A) = ₹ 48620.25
Period $(\mathrm{n})=2$ years $=4$ half years
Consider rate of interest $=r \%$ p.a. $=r / 2 \%$ half yearly
We know that
$A / P=(1+r / 100)^{n}$
Substituting the values
$48620.25 / 40000=(1+r / 200)^{4}$
By further calculation
$(1+r / 200)^{4}=4862025 /(100 \times 40000)=194481 / 160000$
So we get
$(1+r / 200)^{4}=(21 / 20)^{4}$
It can be written as
$1+r / 200=21 / 20$
$r / 200=21 / 20-1=1 / 20$
By cross multiplication
$r=200 \times 1 / 20=10$
Hence the rate of interest per annum is 10%.
19. Determine the rate of interest for a sum that becomes $216 / 125$ times of itself in $11 / 2$ years, compounded semi-annually.

Solution:

Consider principal $(P)=x$
Amount (A) $=216 / 125 x$
Period $(n)=11 / 2$ years $=3$ half years
Take rate percent per year $=2 r \%$ and $r \%$ half yearly
We know that
$A / P=(1+r / 100)^{n}$
Substituting the values
$216 x / 125 x=(1+r / 100)^{3}$

By further calculation
$(1+r / 100)^{3}=216 / 125=(6 / 5)^{3}$
So we get
$1+r / 100=6 / 5$
$r / 100=6 / 5-1=1 / 5$
By cross multiplication
$r=100 \times 1 / 5=20 \%$
So the rate percent per year $=2 \times 20=40 \%$
20. At what rate percent p.a. compound interest would ₹ 80000 amounts to ₹ 88200 in two years, interest being compounded yearly. Also find the amount after 3 years at the above rate of compound interest.

Solution:

It is given that
Principal (P) = ₹ 80000
Amount (A) = ₹ 88200
Period (n) $=2$ years
Consider r\% per annum as the rate of interest percent
We know that
$A / P=(1+r / 100)^{n}$
Substituting the values

$$
88200 / 80000=(1+r / 100)^{2}
$$

By further calculation

$$
(1+r / 100)^{2}=441 / 400=(21 / 20)^{2}
$$

So we get
$1+r / 100=21 / 20$
$r / 100=21 / 20-1=1 / 20$
By cross multiplication
$r=1 / 20 \times 100=5$
Hence, the rate of interest is 5% per annum.
21. A certain sum amounts to ₹ 5292 in 2 years and to ₹ 5556.60 in 3 years at compound interest. Find the rate and the sum.

Solution:

It is given that
Amount after 2 years = ₹ 5292
Amount after 3 years = ₹ 5556.60
So the difference $=5556.60-5292=$ ₹ 264.60
Here ₹ 264.60 is the interest on ₹ 5292 for one year
We know that
Rate $\%=(\mathrm{SI} \times 100) /(\mathrm{P} \times \mathrm{t})$
Substituting the values
$=(264.60 \times 100) /(5292 \times 1)$
Multiply and divide by 100
$=(26460 \times 100) /(100 \times 5292)$
$=5 \%$
Here
$A=P(1+r / 100)^{n}$
Substituting the values
$5292=P(1+5 / 100)^{2}$
By further calculation

$$
P=5292 \div(1+5 / 100)^{2}
$$

So we get
$P=5292 \div(21 / 20)^{2}$
$P=5292 \times 21 / 20 \times 21 / 20$
$\mathrm{P}=₹ 4800$
Hence, the rate is 5% and the sum is ₹ 4800 .
22. A certain sum amounts to ₹ 798.60 after 3 years and ₹ 878.46 after 4 years. Find the interest rate and the sum.

Solution:

It is given that
Amount after 3 years $=₹ 798.60$
Amount after 4 years $=₹ 878.46$
So the difference $=878.46-798.60=₹ 79.86$
Here ₹ 79.86 is the interest on ₹ 798.60 for 1 year.
We know that
Rate $=(\mathrm{SI} \times 100) /(\mathrm{P} \times \mathrm{t})$
Substituting the values
$=(79.86 \times 100) /(798.60 \times 1)$
Multiply and divide by 100
$=(7986 \times 100 \times 100) /(79860 \times 100 \times 1)$
= 10%
Here
$\mathrm{A}=\mathrm{P}(1+\mathrm{r} / 100)^{\mathrm{n}}$
It can be written as
$P=A \div(1+r / 100)^{n}$
Substituting the values
$P=798.60 \div(1+10 / 100)^{3}$
By further calculation

$$
P=79860 / 100 \times 10 / 11 \times 10 / 11 \times 10 / 11
$$

$$
P=₹ 600
$$

23. In what time will ₹ 15625 amount to ₹ 17576 at 4% per annum compound interest?

Solution:

It is given that
Amount (A) = ₹ 17576
Principal (P) = ₹ 15625
Rate $=4 \%$ p.a.
Consider n years as the period

We know that
$\mathrm{A} / \mathrm{P}=(1+\mathrm{r} / 100)^{\mathrm{n}}$
Substituting the values
$17576 / 15625=(1+4 / 100)^{n}$
By further calculation
$(26 / 25)^{3}=(26 / 25)^{n}$
So we get
$\mathrm{n}=3$
24. (i) In what time will ₹ 1500 yield ₹ 496.50 as compound interest at 10% per annum compounded annually?
(ii) Find the time (in years) in which ₹ 12500 will produce ₹ 3246.40 as compound interest at 8% per annum, interest compounded annually.
Solution:
(i) It is given that

Principal (P) $=$ ₹ 1500
$\mathrm{Cl}=$ ₹ 496.50
So the amount (A) $=P+S I$
Substituting the values
$=1500+496.50$
= ₹ 1996.50
Rate $(r)=10 \%$ p.a.
We know that
A $=P(1+r / 100)^{n}$
It can be written as
$\mathrm{A} / \mathrm{P}=(1+\mathrm{r} / 100)^{\mathrm{n}}$
Substituting the values
1996.50/1500 $=(1+10 / 100)^{n}$

By further calculation
$199650 /(1500 \times 100)=(11 / 10)^{n}$

NEET | JEE MAIN | WBJEE | ISC | ICSE | CBSE

So we get
$1331 / 1000=(11 / 10)^{n}$
$(11 / 10)^{3}=(11 / 10)^{n}$
Here Time $\mathrm{n}=3$ years
(ii) It is given that

Principal (P) = ₹ 12500
$\mathrm{Cl}=₹ 3246.40$
So the amount (A) $=\mathrm{P}+\mathrm{Cl}$
Substituting the values
$=12500+3246.40$
= ₹ 15746.40
Rate (r) $=8 \%$ p.a.
We know that
$A=P(1+r / 100)^{n}$
It can be written as
$\mathrm{A} / \mathrm{P}=(1+\mathrm{r} / 100)^{\mathrm{n}}$
Substituting the values
$15746.40 / 12500=(1+8 / 100)^{n}$
Multiply and divide by 100
$1574640 /(12500 \times 100)=(27 / 25)^{n}$
By further calculation
$78732 /(12500 \times 5)=(27 / 25)^{n}$
$19683 /(3125 \times 5)=(27 / 25)^{n}$
So we get
$19683 / 15625=(27 / 25)^{n}$
$(27 / 25)^{3}=(27 / 25)^{n}$
Here Period = 3 years
25. ₹ 16000 invested at 10% p.a., compounded semi-annually, amounts to ₹ 18522, find the time period of investment.

Solution:

It is given that
Principal (P) =₹ 16000
Amount (A) = ₹ 18522
Rate $=10 \%$ p.a. or 5% semi-annually
Consider period $=n$ half years
We know that
A/P = (1 + r/100) ${ }^{n}$
Substituting the values
$18522 / 16000=(1+5 / 100)^{n}$
By further calculation
$9261 / 8000=(21 / 20)^{n}$
So we get
$(21 / 20)^{3}=(21 / 20)^{n}$
$\mathrm{n}=3$ half years
Here
Time = 3/2 = $11 / 2$ years
26. What sum will amount to ₹ 2782.50 in 2 years at compound interest, if the rates are 5\% and 6\% for the successive years?

Solution:

It is given that
Amount (A) = ₹ 2782.50
Rate of interest for two successive years $=5 \%$ and 6%
We know that
$A=P(1+r / 100)^{n}$
Substituting the values
$2782.50=P(1+5 / 100)(1+6 / 100)$
By further calculation
$2782.50=P \times 21 / 20 \times 53 / 50$

NEET | JEE MAIN | WBJEE | ISC | ICSE | CBSE

So we get
$P=2782.50 \times 20 / 21 \times 50 / 53$
Multiply and divide by 100
$P=278250 / 100 \times 20 / 21 \times 50 / 53$
$\mathrm{P}=$ ₹ 2500
Hence, the principal is ₹ 2500 .
27. A sum of money is invested at compound interest payable annually. The interest in two successive years is ₹ 225 and ₹ 240 . Find:
(i) the rate of interest
(ii) the original sum
(iii) the interest earned in the third year.

Solution:

It is given that
Interest for the first year = ₹ 225
Interest for the second year = ₹ 240
So the difference $=240-225=₹ 15$
Here ₹ 15 is the interest on ₹ 225 for 1 year
(i) Rate $=(\mathrm{SI} \times 100) /(\mathrm{P} \times \mathrm{t})$

Substituting the values
$=(15 \times 100) /(225 \times 1)$
So we get
$=20 / 3$
$=62 / 3 \%$ p.a.
(ii) We know that

Sum $=(\mathrm{SI} \times 100) /(\mathrm{R} \times \mathrm{t})$
Substituting the values
$=(225 \times 100) /(20 / 3 \times 1)$
It can be written as
$=(225 \times 100 \times 3) /(20 \times 1)$

So we get
$=225 \times 15$
= ₹ 3375
(iii) Here

Amount after second year $=225+240+3375=₹ 3840$
So the interest for the third year $=\mathrm{Prt} / 100$
Substituting the values
$=(3840 \times 20 \times 1) /(100 \times 3)$
= ₹ 256
28. On what sum of money will the difference between the compound interest and simple interest for 2 years be equal to ₹ 25 if the rate of interest charged for both is 5\% p.a.?

Solution:

It is given that
Sum (P) = ₹ 100
Rate $(R)=5 \%$ p.a.
Period (n) $=2$ years
We know that
SI = PRT/100
Substituting the values
$=(100 \times 5 \times 2) / 100$
$=₹ 10$
So the amount when interest is compounded annually $=P(1+R / 100)^{n}$
Substituting the values
$=100(1+5 / 100)^{2}$
By further calculation
$=100 \times(21 / 20)^{2}$
$=100 \times 21 / 20 \times 21 / 20$
So we get

$$
=₹ 441 / 4
$$

Here
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
$=441 / 4-100$
= ₹ $41 / 4$
So the difference between Cl and $\mathrm{SI}=41 / 4-10=₹ 1 / 4$
If the difference is $₹ 1 / 4$ then sum $=₹ 100$
If the difference is ₹ 25 then sum $=(100 \times 4) / 1 \times 25=$ ₹ 10000
29. The difference between the compound interest for a year payable halfyearly and the simple interest on a certain sum of money lent out at 10\% for a year is ₹ 15 . Find the sum of money lent out.

Solution:

It is given that
Sum = ₹ 100
Rate $=10 \%$ p.a. or 5% half yearly
Period $=1$ years or 2 half years
We know that
$A=P(1+R / 100)^{n}$
Substituting the values
$=100(1+5 / 100)^{2}$
By further calculation
$=100 \times 21 / 20 \times 21 / 20$
$=$ ₹ $441 / 4$
Here
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
$=441 / 4-100$
$=$ ₹ $41 / 4$

SI = PRT/100
Substituting the values
$=(100 \times 10 \times 1) / 100$
= ₹ 10
So the difference between CI and $\mathrm{SI}=41 / 4-10=₹ 1 / 4$
Here if the difference is ₹ $1 / 4$ then sum $=₹ 100$
If the difference is ₹ 15 then sum $=(100 \times 4 \times 15) / 1=₹ 6000$
30. The amount at compound interest which is calculated yearly on a certain sum of money is ₹ 1250 in one year and ₹ 1375 after two years. Calculate the rate of interest.

Solution:

It is given that
Amount after one year $=₹ 1250$
Amount after two years = ₹ 1375
Here the difference $=1375-1250=₹ 125$
So ₹ 125 is the interest on ₹ 1250 for 1 year
We know that
Rate of interest $=(\mathrm{SI} \times 100) /(\mathrm{P} \times \mathrm{t})$
Substituting the values
$=(125 \times 100) /(1250 \times 1)$
$=10 \%$
31. The simple interest on a certain sum for 3 years is $₹ 225$ and the compound interest on the same sum at the same rate for 2 years is ₹ 153 .
Find the rate of interest and the principal.

Solution:

It is given that
SI for 3 years $=₹ 225$
SI for 2 years $=(225 \times 2) / 3=₹ 150$
Cl for 2 years $=₹ 153$
So the difference $=153-150=₹ 3$

Here ₹ 3 is interest on one year i.e. ₹ 75 for one year
We know that
Rate $=(\mathrm{SI} \times 100) /(\mathrm{P} \times \mathrm{t})$
Substituting the values
$=(3 \times 100) /(75 \times 1)$
= 4\%
SI for 3 years = ₹ 225
Rate $=4 \%$ p.a.
So principal $=(\mathrm{SI} \times 100) /(\mathrm{R} \times \mathrm{t})$
Substituting the values
$=(225 \times 100) /(4 \times 3)$
$=$ ₹ 1875
32. Find the difference between compound interest on ₹ 8000 for $11 / 2$ years at 10% p.a. when compounded annually and semi-annually.

Solution:

It is given that
Principal (P) = ₹ 8000
Rate $=10 \%$ p.a. or 5% half-yearly
Period $=11 / 2$ years or 3 half years
Case 1 - When compounded annually
A = P (1 + r/100) ${ }^{n}$
Substituting the values
$=8000(1+10 / 100)(1+5 / 100)$
By further calculation
$=8000 \times 11 / 10 \times 21 / 20$
= ₹ 9240
We know that
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
$=9240-8000$
= ₹ 1240
Case 2 - When compounded half-yearly
A $=P(1+r / 100)^{n}$
Substituting the values
$=8000(1+5 / 100)^{3}$
By further calculation
$=8000 \times 21 / 20 \times 21 / 20 \times 21 / 20$
= ₹ 9261
We know that
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
= 9261-8000
= ₹ 1261
Here the difference between two $\mathrm{CI}=1261-1240=$ ₹ 21
33. A sum of money is lent out at compound interest for two years at 20\% p.a., Cl being reckoned yearly. If the same sum of money is lent out at compound interest at same rate percent per annum, Cl being reckoned halfyearly, it would have fetched ₹ 482 more by way of interest. Calculate the sum of money lent out.

Solution:

It is given hat
Sum = ₹ 100
Rate $=20 \%$ p.a. or 10% half-yearly
Period $=2$ years or 4 half-years
Case 1 - When the interest is reckoned yearly
A $=P(1+r / 100)^{n}$
Substituting the values
$=100(1+20 / 100)^{2}$
By further calculation
$=100 \times 6 / 5 \times 6 / 5$
= ₹ 144
We know that
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
= 144 - 100
= ₹ 44
Case 2 - When the interest is reckoned half-yearly
$A=P(1+r / 100)^{n}$
Substituting the values
$=100(1+10 / 100)^{4}$
By further calculation
$=100 \times 11 / 10 \times 11 / 10 \times 11 / 10 \times 11 / 10$
= ₹ 146.41
We know that
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
$=146.41$ - 100
= ₹ 46.41
So the difference between two $\mathrm{Cl}=46.41-44=₹ 2.41$
If the difference is ₹ 2.41 then sum $=$ ₹ 100
If the difference is ₹ 482 then sum $=(100 \times 482) / 2.41$
Multiplying and dividing by 100
$=(100 \times 482 \times 100) / 241$
= ₹ 20000
34. A sum of money amounts to ₹ 13230 in one year and to ₹ 13891.50 in 1 1/2 years at compound interest, compounded semi-annually. Find the sum and the rate of interest per annum.

Solution:

NEET | JEE MAIN | WBJEE | ISC | ICSE | CBSE

It is given that
Amount after one year $=₹ 13230$
Amount after 1 1/2 years $=₹ 13891.50$
So the difference $=13891.50-13230=₹ 661.50$
Here ₹ 661.50 is the interest on ₹ 13230 for $1 / 2$ years
We know that
Rate $=(661.50 \times 100 \times 2) /(13230 \times 1)$
Multiplying and dividing by 100
$=(66150 \times 100 \times 2) /(13230 \times 1 \times 100)$
= 10\% p.a.
Here
$A=P(1+r / 100)^{n}$
Substituting the values
$13891.50=P(1+5 / 100)^{3}$
By further calculation
$13891.50=P \times 21 / 20 \times 21 / 20 \times 21 / 20$
So we get
$P=13891.50 \times 20 / 21 \times 20 / 21 \times 20 / 21$
$P=₹ 12000$

Exercise 2.3

1. The present population of a town is 200000 . Its population increases by 10% in the first year and 15% in the second year. Find the population of the town at the end of two years.

Solution:

We know that
Population after 2 years $=$ Present population $\times(1+r / 100)^{n}$
Here the present population $=200000$
Population after first year $=200000 \times(1+10 / 100)^{1}$
By further calculation
$=200000 \times 11 / 10$
$=220000$
Population after two years $=220000 \times(1+15 / 100)^{1}$
By further calculation
$=220000 \times 23 / 20$
$=253000$
2. The present population of a town is 15625. If the population increases at the rate of 4% every year, what will be the increase in the population in next 3 years?

Solution:

It is given that
Present population $(P)=15625$
Rate of increase (r) $=4 \%$ p.a.
Period (n) = 3 years
We know that
Population after 3 years $=P(1+r / 100)^{n}$
Substituting the values
$=15625(1+4 / 100)^{3}$
By further calculation
$=15625 \times 26 / 25 \times 26 / 25 \times 26 / 25$
$=17576$
So the increase $=17576-15625=1951$
3. The population of a city increase each year by 4% of what it had been at the beginning of each year. If its present population is 6760000, find:
(i) its population 2 years hence
(ii) its population 2 years ago.

Solution:

It is given that
Present population $=6760000$
Increase percent $=4 \%$ p.a.
(i) We know that

Population 2 years hence $=P(1+r / 100)^{2}$
Substituting the values
$=6760000(1+4 / 100)^{2}$
By further calculation
$=6760000 \times 26 / 25 \times 26 / 25$
$=7311616$
(ii) We know that $A=6760000$

Population 2 years ago $P=A+(1+r / 100)^{2}$
Substituting the values
$=6760000+(1+4 / 100)^{2}$
By further calculation
$=6760000+(26 / 25)^{2}$
$=6760000 \times 25 / 26 \times 25 / 26$
$=6250000$
4. The cost of a refrigerator is ₹ 9000 . Its value depreciates at the rate of 5% ever year. Find the total depreciation in its value at the end of 2 years.
Solution:
It is given that
Present value (P) = ₹ 9000
Rate of depreciation (r) $=5 \%$ p.a.
Period (n) $=2$ years
We know that
Value after 2 years $=P(1-r / 100)^{n}$
Substituting the values
$=9000(1-5 / 100)^{2}$
By further calculation
$=9000 \times 19 / 20 \times 19 / 20$
$=₹ 8122.50$

NEET | JEE MAIN | WBJEE | ISC | ICSE | CBSE

So the total depreciation $=9000-8122.50=₹ 877.50$
5. Dinesh purchased a scooter for ₹ 24000 . The value of the scooter is depreciating at the rate of 5% per annum. Calculate its value after 3 years.

Solution:
It is given that
Present value of scooter (P) = ₹ 24000
Rate of depreciation (r) $=5 \%$
Period (n) $=3$ years
We know that
Value after 3 years $=P(1-r / 100)^{n}$
Substituting the values
$=24000(1-5 / 100)^{3}$
By further calculation
$=24000 \times 19 / 20 \times 19 / 20 \times 19 / 20$
= ₹ 20577
6. A farmer increases his output of wheat in his farm every year by 8%. This year he produced 2187 quintals of wheat. What was the yearly produce of wheat two years ago?

Solution:

It is given that
Present production of wheat $=2187$ quintals
Increase in production $=8 \%$ p.a.
We know that
Production of wheat 2 years ago $=A \div(1+r / 100)^{n}$
Substituting the values
$=2187 \div(1+8 / 100)^{2}$
By further calculation
$=2187 \div(27 / 25)^{2}$
So we get
$=2187 \times 25 / 27 \times 25 / 27$

NEET | JEE MAIN | WBJEE | ISC | ICSE | CBSE

$=1875$ quintals
7. The value of a property decreases every year at the rate of 5%. If its present value is ₹ 411540 , what was its value three years ago?

Solution:

It is given that
Present value of property $=₹ 411540$
Rate of decrease $=5 \%$ p.a.
We know that
Value of property 3 years ago $=A \div(1-r / 100)^{n}$
Substituting the values
$=411540 \div(1-5 / 100)^{3}$
By further calculation
$=411540 \div(19 / 20)^{3}$
So we get
$=411540 \times 20 / 19 \times 20 / 19 \times 20 / 19$
= ₹ 480000
8. Ahmed purchased an old scooter for ₹ 16000 . If the cost of the scooter after 2 years depreciates to ₹ 14440, find the rate of depreciation.

Solution:

It is given that
Present value = ₹ 16000
Value after 2 years = ₹ 14440
Consider r\% p.a. as the rate of depreciation
We know that
$A / P=(1-r / 100)^{n}$
Substituting the values
$14440 / 16000=(1-r / 100)^{2}$
By further calculation
$361 / 400=(1-r / 100)^{2}$
$(19 / 20)^{2}=(1-r / 100)^{2}$
We can write it as
$1-r / 100=19 / 20$
So we get
$r / 100=1-19 / 20=1 / 20$
By cross multiplication
$r=1 / 20 \times 100=5 \%$
Hence, the rate of depreciation is 5\%.
9. A factory increased its production of cars from 80000 in the year 2011-2012 to 92610 in 2014-15. Find the annual rate of growth of production of cars.

Solution:

It is given that
Production of cars in 2011-2012 $=80000$
Production of cars in 2014-2015 = 92610
Period (n) $=3$ years
Consider r\% as the rate of increase
We know that
$A / P=(1+r / 100)^{n}$
Substituting the values
$92610 / 80000=(1+r / 100)^{3}$
By further calculation
$(21 / 20)^{3}=(1+r / 100)^{3}$
We can write it as
$1+r / 100=21 / 20$
$r / 100=21 / 20-1=1 / 20$
By cross multiplication
$r=1 / 20 \times 100=5$
Hence, the annual rate of growth of production of cars is 5% p.a.
10. The value of a machine worth ₹ 500000 is depreciating at the rate of 10% every year. In how many years will its value be reduced to ₹ 364500 ?

Solution:

It is given that
Present value = ₹ 500000
Reduced value = ₹ 364500
Rate of depreciation $=10 \%$ p.a.
Consider n years as the period
We know that
$\mathrm{A} / \mathrm{P}=(1-\mathrm{r} / 100)^{\mathrm{n}}$
Substituting the values
$364500 / 500000=(1-10 / 100)^{n}$
By further calculation
$(9 / 10)^{n}=729 / 1000=(9 / 10)^{3}$
So we get
n = 3
Therefore, the period in which its value be reduced to ₹ 364500 is 3 years.
11. Afzal purchased an old motorbike for ₹ 16000. If the value of the motorbike after 2 years is ₹ 14440 , find the rate of depreciation.

Solution:

It is given that
CP of an old motorbike = ₹ 16000
Price after 2 years = ₹ 14440
Consider r\% as the rate of depreciation
We know that
$\mathrm{A} / \mathrm{P}=(1-\mathrm{r} / 100)^{\mathrm{n}}$
Substituting the values
$14440 / 16000=(1-\mathrm{r} / 100)^{2}$
By further calculation
$361 / 400=(1-r / 100)^{2}$
$(19 / 20)^{2}=(1-r / 100)^{2}$
So we get
19/20 = $1-r / 100$
$r / 100=1-19 / 20=(20-19) / 20=1 / 20$
By cross multiplication
$r=100 / 20=5$
Hence, the rate of depreciation is 5\%.
12. Mahindra set up a factory by investing ₹ 2500000 . During the first two years, his profits were 5% and 10% respectively. If each year the profit was on previous year's capital, calculate his total profit.

Solution:

It is given that
Investment = ₹ 2500000
Rates of profit during first two years $=5 \%$ and 10%
We know that
Capital after two years $(A)=P(1+r / 100)^{n}$
Substituting the values
$=2500000(1+5 / 100)(1+10 / 100)$
By further calculation
$=2500000 \times 21 / 20 \times 11 / 10$
= ₹ 2887500
So the net profit $=A-P$
Substituting the values
$=2887500-2500000$
= ₹ 387500
13. The value of a property is increasing at the rate of 25% every year. By what percent will the value of the property increase after 3 years?

Solution:

It is given that

Original price of the property $(\mathrm{P})=₹ 100$
Rate of increase (r) $=25 \%$ p.a.
Period (n) $=3$ years
We know that
Increased value after 3 years $=P(1+r / 100)^{n}$
Substituting the values
$=100(1+25 / 100)^{3}$
By further calculation
$=100 \times 5 / 4 \times 5 / 4 \times 5 / 4$
= ₹ 3125/16
Here
Increased value $=3125 / 16-100$
Taking LCM
$=(3125-1600) / 16$
$=1525 / 16$
So the percent increase after 3 years $=1525 / 16=955 / 16 \%$
14. Mr. Durani bought a plot of land for ₹ 180000 and a car for ₹ 320000 at the same time. The value of the plot of land grows uniformly at the rate of 30\%
p.a.., while the value of the car depreciates by 20% in the first year and by 15% p.a. thereafter. If he sells the plot of land as well as the car after 3 years, what will be his profit or loss?

Solution:

It is given that
Price of plot of land = ₹ 180000
Growth rate $=30 \%$ p.a.
Period (n) $=3$ years
We know that
Amount after 3 years $=P(1+R / 100)^{n}$
Substituting the values
$=180000(1+30 / 100)^{3}$

By further calculation
$=180000 \times(13 / 10)^{3}$
It can be written as
$=180000 \times 13 / 10 \times 13 / 10 \times 13 / 10$
= ₹ 395460
Here
Price of car = ₹ 320000
Rate of depreciation $=20 \%$ for the first year and 15% for next period
Period (n) = 3 years
We know that
Amount after 3 years $=A\left(1-R_{1} / 100\right)^{n} \times\left(1-R_{2} / 100\right)^{2}$
Substituting the values
$=320000(1-20 / 100)(1-15 / 100)^{2}$
By further calculation
$=320000 \times 4 / 5 \times(17 / 20)^{2}$
So we get
$=320000 \times 4 / 5 \times 17 / 20 \times 17 / 20$
= ₹ 184960
Here
Total cost of plot and car $=180000+320000=₹ 500000$
Total sale price of plot and car $=395460+184960=₹ 580420$
We know that
Profit $=$ S.P. - C.P.
Substituting the values
= 580420-500000
= ₹ 80420

Chapter Test

1. ₹ 10000 was lent for one year at 10% per annum. By how much more will the interest be, if the sum was lent at 10\% per annum, interest being compounded half yearly?

Solution:

It is given that
Principal $=₹ 10000$
Rate of interest (r) = 10\% p.a.
Period $=1$ year
We know that
$A=P(1+r / 100)^{n}$
Substituting the values
$=10000(1+10 / 100)^{1}$
By further calculation
$=10000 \times 11 / 10$
$=₹ 11000$
Here
Interest $=\mathrm{A}-\mathrm{P}$
Substituting the values
$=11000-10000$
= ₹ 1000
In case 2,
Rate $(r)=10 \%$ p.a. or 5% half-yearly
Period $(n)=1$ year or 2 half-years
We know that
$A=P(1+r / 100)^{n}$
Substituting the values
$=10000(1+5 / 100)^{2}$
By further calculation
$=10000 \times 21 / 20 \times 21 / 20$
$=₹ 11025$
Here
Interest $=\mathrm{A}-\mathrm{P}$
Substituting the values
= 11025-10000
= ₹ 1025
So the difference between the two interests $=1025-1000=₹ 25$
2. A man invests ₹ 3072 for two years at compound interest. After one year the money amounts to ₹ 3264 . Find the rate of interest and the amount due at the end of 2 nd year.

Solution:

It is given that
Principal $(P)=₹ 3072$
Amount (A) = ₹ 3264
Period (n) = 1 year
We know that
$A / P=(1+r / 100)^{n}$
Substituting the values
$3264 / 3072=(1+r / 100)^{1}$
By further calculation
$1+r / 100=17 / 16$
$r / 100=17 / 16-1=1 / 16$
By cross multiplication
$r=100 \times 1 / 16=25 / 4=61 / 4$
Hence, the rate of interest is $6 \frac{1}{4} \%$.
Here
Amount after 2 years $=3072(1+25 /(4 \times 100))^{2}$
By further calculation
$=3072(1+1 / 16)^{2}$

So we get
$=3072 \times 17 / 16 \times 17 / 16$
= ₹ 3468
Hence, the amount due at the end of 2 years is ₹ 3468 .
3. What sum will amount to ₹ 28090 in two years at 6% per annum compound interest? Also find the compound interest.

Solution:

It is given that
Amount (A) = ₹ 28090
Rate $(r)=6 \%$ p.a.
Period (n) $=2$ years
We know that
$P=A \div(1+r / 100)^{n}$
Substituting the values
$=28090 \div(1+6 / 100)^{2}$
By further calculation
$=28090 \div(53 / 50)^{2}$
So we get
$=28090 \times 50 / 53 \times 50 / 53$
= ₹ 25000
Here
Amount of $\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
= 28090-25000
= ₹ 3090
4. Two equal sums were lent at 5% and 6% per annum compound interest for 2 years. If the difference in the compound interest was ₹ 422, find:
(i) the equal sums
(ii) compound interest for each sum.

Solution:

Consider ₹ 100 as each equal sum
Case I-
Rate (r) $=5 \%$
Period (n) $=2$ years
We know that
A $=P(1+r / 100)^{n}$
Substituting the values
$=100(1+5 / 100)^{2}$
It can be written as
$=100 \times 21 / 20 \times 21 / 20$
$=$ ₹ $441 / 4$
Here
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
$=441 / 4-100$
= ₹ $41 / 4$
Case II-
Rate of interest $(R)=6^{n}$
Period (n) $=2$ years
We know that
A $=\mathrm{P}(1+\mathrm{r} / 100)^{\mathrm{n}}$
Substituting the values
$=100(1+6 / 100)^{2}$
It can be written as
$=100 \times 53 / 50 \times 53 / 50$
= ₹ $2809 / 25$
Here
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$

NEET | JEE MAIN | WBJEE | ISC | ICSE | CBSE

Substituting the values
= 2809/25-100
= ₹ $309 / 25$
So the difference between the two interests = 309/25-41/4
Taking LCM
= (1236-1025)/ 100
= ₹ $211 / 100$
If the difference is ₹ $211 / 100$, then equal sum $=$ ₹ 100
If the difference is ₹ 422 , then equal sum $=(100 \times 422 \times 100) / 211=₹$ 20000

Here

Amount in first case $=20000(1+5 / 100)^{2}$
So we get
$=20000 \times(21 / 20)^{2}$
It can be written as
$=20000 \times 21 / 20 \times 21 / 20$
So we get
= 44100/2
= ₹ 22050
$\mathrm{CI}=22050-20000=₹ 2050$
Amount in second case $=20000(1+6 / 100)^{2}$
It can be written as
$=20000 \times 53 / 50 \times 53 / 50$
= ₹ 22472
$\mathrm{Cl}=22472-20000=₹ 2472$
5. The compound interest on a sum of money for 2 years is ₹ 1331.20 and the simple interest on the same sum for the same period at the same rate is ₹ 1280. Find the sum and the rate of interest per annum.

Solution:

It is given that

Cl for 2 years = ₹ 1331.20
SI for 2 years = ₹ 1280
So the difference $=1331.20-1280=$ ₹ 51.20
Here ₹ 51.20 is the simple interest on 1280/2 = ₹ 640 for one year
We know that
Rate $=(\mathrm{SI} \times 100) /(\mathrm{P} \times \mathrm{t})$
Substituting the values
$=(51.20 \times 100) /(640 \times 1)$
Multiplying and dividing by 100
$=(5120 \times 100) /(100 \times 640)$
$=8 \%$ p.a.
So the SI for two years at the rate of $8 \% \mathrm{pa}$
Sum $=(\mathrm{SI} \times 100) /(r \times \mathrm{t})$
Substituting the values
$=(1280 \times 100) /(8 \times 2)$
= ₹ 8000
6. On what sum will the difference between the simple and compound interest for 3 years if the rate of interest is 10% p.a. is ₹ 232.50 ?

Solution:

Consider sum (P) = ₹ 100
Rate (r) $=10 \%$ p.a.
Period (n) $=3$ years
We know that
A $=P(1+r / 100)^{n}$
Substituting the values
$=100(1+10 / 100)^{3}$
By further calculation
$=100 \times 11 / 10 \times 11 / 10 \times 11 / 10$
$=$ ₹ 133.10

Here
$\mathrm{Cl}=\mathrm{A}-\mathrm{P}$
Substituting the values
$=133.10-100$
= ₹ 33.10
So the simple interest $=$ PRT/100
Substituting the values
$=(100 \times 10 \times 3) / 100$
= ₹ 30
Difference $=33.10-30=$ ₹ 3.10
Here if the difference is ₹ 3.10 then sum = ₹ 100
If the difference is ₹ 232.50 then sum $=(100 \times 232.50) / 3.10$
Multiplying and dividing by 100
$=(100 \times 23250) / 310$
= ₹ 7500
7. The simple interest on a certain sum for 3 years is ₹ 1080 and the compound interest on the same sum at the same rate for 2 years is ₹ 741.60. Find:
(i) the rate of interest
(ii) the principal.

Solution:
It is given that
SI for 3 years = ₹ 1080
SI for 2 years $=(1080 \times 2) / 3=₹ 720$
Cl for 2 years $=₹ 741.60$
So the difference $=741.60-720=₹ 21.60$
Here ₹ 21.60 is the SI on $720 / 2=₹ 360$ for one year
(i) We know that

Rate $=(\mathrm{SI} \times 100) /(\mathrm{P} \times \mathrm{t})$

NEET | JEE MAIN | WBJEE | ISC | ICSE | CBSE

Substituting the values
$=(21.60 \times 100) /(360 \times 1)$
Multiply and divide by 100
$=(2160 \times 100) /(100 \times 360 \times 1)$
= 6%
(ii) ₹ 1080 is SI for 3 years at the rate of 6% p.a.

So the principal $=(\mathrm{SI} \times 100) /(r \times \mathrm{t})$
Substituting the values
$=(1080 \times 100) /(6 \times 3)$
$=$ ₹ 6000
8. In what time will ₹ 2400 amount to ₹ 2646 at 10% p.a. compounded semiannually?

Solution:

It is given that
Amount (A) = ₹ 2646
Principal (P) = ₹ 2400
Rate (r) $=10 \%$ p.a. or 5% semi-annually
Consider Period $=\mathrm{n}$ half-years
We know that
$A / P=(1+r / 100)^{n}$
Substituting the values
$2646 / 2400=(1+5 / 100)^{n}$
By further calculation
$(21 / 20)^{n}=441 / 400=(21 / 20)^{2}$
$\mathrm{n}=2$
Therefore, the time period is 2 half years or 1 year.
9. Sudarshan invested ₹ 60000 in a finance company and received ₹ 79860 after $11 / 2$ years. Find the rate of interest per annum compounded half-yearly.
Solution:

It is given that
Principal (P) = ₹ 60000
Amount (A) = ₹ 79860
Period $(\mathrm{n})=1 \frac{112}{2}$ years $=3$ half-years
We know that
A/P = (1 + r/100) ${ }^{n}$
Substituting the values
$79860 / 60000=(1+r / 100)^{3}$
By further calculation
$(1+r / 100)^{3}=1331 / 1000=(11 / 10)^{3}$
We get
$1+r / 100=11 / 10$
$r / 100=11 / 10-1=1 / 10$
By cross multiplication
$r=1 / 10 \times 100=10 \%$ half-yearly
$r=10 \times 2=20 \%$ p.a.
Therefore, the rate of interest per annum compounded half-yearly is 20%.
10. The population of a city is 320000 . If the annual birth rate is 9.2% and the annual death rate is 1.7%, calculate the population of the town after 3 years.

Solution:

It is given that
Birth rate $=9.2 \%$
Death rate $=1.7 \%$
So the net growth rate $=9.2-1.7=7.5 \%$
Present population $(P)=320000$
Period (n) $=3$ years
We know that
Population after 3 years $(A)=P(1+r / 100)^{n}$
Substituting the values
$=320000(1+7.5 / 100)^{3}$
By further calculation
$=320000(1+3 / 40)^{3}$
$=320000 \times(43 / 40)^{3}$
So we get
$=320000 \times 43 / 40 \times 43 / 40 \times 43 / 40$
$=397535$
11. The cost of a car, purchased 2 years ago, depreciates at the rate of 20% every year. If the present value of the car is ₹ 315600 find:
(i) its purchase price
(ii) its value after 3 years

Solution:

It is given that
Present value of car $=₹ 315600$
Rate of depreciation (r) $=20 \%$
(i) We know that

Purchase price $=A \div(1-r / 100)^{n}$
Substituting the values
$=315600 \div(1-20 / 100)^{2}$
By further calculation
$=315600 \times 5 / 4 \times 5 / 4$
$=₹ 493125$
(ii) We know that

Value after 3 years $=315600 \times(1-20 / 100)^{3}$
By further calculation
$=315600 \times 4 / 5 \times 4 / 5 \times 4 / 5$
= ₹ 161587.20
12. Amar Singh started a business with an initial investment of ₹ 400000 . In the first year he incurred a loss of 4\%. However, during the second year, he
earned a profit of 5% which in the third year rose to 10%. Calculate his net profit for the entire period of 3 years.

Solution:

It is given that
Investment (P) = ₹ 400000
Loss in the first year = 4\%
Profit in the second year $=5 \%$
Profit in the third year $=10 \%$
We know that
Total amount after 3 years $=P(1+r / 100)^{n}$
Substituting the values
$=400000(1-4 / 100)(1+5 / 100)(1+10 / 100)$
By further calculation
$=400000 \times 24 / 25 \times 21 / 20 \times 11 / 10$
= ₹ 443520
So the net profit after 3 years $=443520-400000=₹ 43520$

