ICSE - Class X Mathematics - M.L. Agarwal Solution

Chapter 2 : Banking

Exercise 2

1. Mrs. Goswami deposits ₹ 1000 every month in a recurring deposit account for 3 years at 8% interest per annum. Find the matured value.

Solution:

It is given that
Amount deposited by Mrs. Goswami = ₹ 1000
Rate of interest $=8 \%$ p.a.
Period $(x)=3$ years $=36$ months
We know that
Total principal for one month $=1000 \times[x(x+1)] / 2$
Substituting the value of x
$=1000 \times(36 \times 37) / 2$
By further calculation
= ₹ 666000
Interest = PRT/ 100
Substituting the values
$=(666000 \times 8 \times 1) /(100 \times 12)$
So we get

$$
\text { = ₹ } 4440
$$

So the amount of maturity $=P \times x+S I$

$$
\begin{aligned}
& =1000 \times 36+4440 \\
& =36000+4440 \\
& =₹ 40440
\end{aligned}
$$

2. Sonia had a recurring deposit account in a bank and deposited ₹ 600 per month for $21 / 2$ years. If the rate of interest was 10% p.a., find the maturity value of this account.

Solution:

Its given that,
Amount deposited by Sonia per month $=₹ 600$
Rate of interest $(r)=10 \%$ p.a.
Period $(\mathrm{n})=21 / 2$ years $=30$ months
The interest earned during this period is calculated using the formula:

$$
\begin{aligned}
& I=P \times[n(n+1) /(2 \times 12)] \times r / 100 \\
& I=600 \times[30(30+1) /(2 \times 12)] \times 10 / 100 \\
& =600 \times[(30 \times 31) /(2 \times 12)] \times 1 / 10 \\
& =60 \times[(15 \times 31) / 12] \\
& =5 \times 15 \times 31 \\
& I=₹ 2325
\end{aligned}
$$

$$
\text { Maturity value }(M V)=P \times n+I
$$

$$
M V=₹(600 \times 30+2325)
$$

$$
=₹(18000+2325)
$$

= ₹ 20325
Hence, the maturity value of Sonia's account will be ₹ 20325.
3. Kiran deposited ₹ 200 per month for 36 months in a bank's recurring deposit account. If the banks pays interest at the rate of 11% per annum, find the amount she gets on maturity?

Solution:

It is given that
Amount deposited by Kiran $=₹ 200$
Rate of interest = 11\% p.a.
Period $(x)=36$ months
So the amount deposited in 36 months $=200 \times 36=₹ 7200$
We know that
Total principal for one month $=200 \times[x(x+1)] / 2$
Substituting the value of x
$=200 \times(36 \times 37) / 2$
By further calculation
= ₹ 133200
Interest = PRT/ 100
Substituting the values
$=(133200 \times 11 \times 1) /(100 \times 12)$
So we get
= ₹ 1221
So the amount of maturity $=P \times x+S I$
$=7200+1221$

$$
\text { = ₹ } 8421
$$

4. Haneef has a cumulative bank account and deposits ₹ 600 per month for a period of 4 years. If he gets ₹ 5590 as interest at the time of maturity, find the rate of interest per annum.

Solution:

Interest at the time of maturity $=₹ 5880$
Amount deposited by Haneef $=₹ 600$
Period $(x)=4$ years $=48$ months
We know that
Total principal for one month $=600 \times[x(x+1)] / 2$
Substituting the value of x
$=600 \times(48 \times 49) / 2$
By further calculation
= ₹ 705600
Consider r\% p.a. as the rate of interest
Interest = PRT/ 100
Substituting the values
$5880=(705600 \times r \times 1) /(100 \times 12)$
So we get
$5880=588 r$
By further calculation
$r=5880 / 588=10$
Hence, the rate of interest $=10 \%$ p.a.
5. David opened a Recurring Deposit Account in a bank and deposited ₹ 300 per month for two years. If he received ₹ 7725 at the time of maturity, find the rate of interest per annum.

Solution:

It is given that
Amount deposited per month $=₹ 300$
Period $(x)=2$ years $=24$ months
Amount received at the time of maturity = ₹ 7725
Consider R as the rate percent
We know that
Total principal for one month $=300 \times[x(x+1)] / 2$
Substituting the value of x
$=300 \times(24 \times 25) / 2$
By further calculation
= ₹ 90000
Interest = PRT/ 100
Substituting the values
$=(90000 \times \mathrm{R} \times 1) /(100 \times 12)$
So we get
$=75 \mathrm{R}$
So we get
$300 \times 24+75 R=7725$
By further calculation $7200+75 R=7725$
$75 R=7725-7200=525$
$R=525 / 75=7$
Hence, the rate of interest is 7% p.a.
6. Mr. Gupta opened a recurring deposit account in a bank. He deposited ₹ $\mathbf{2 5 0 0}$ per month for two years. At the time of maturity he got ₹ 67500 . Find:
(i) the total interest earned by Mr. Gupta.
(ii) the rate of interest per annum.

Solution:

It is given that
Amount deposited by Mr. Gupta per month = ₹ 2500
Period $(x)=2$ years $=24$ months
Amount got at the time of maturity $=₹ 67500$
We know that
Total principal for one month $=2500 \times[x(x+1)] / 2$
Substituting the value of x
$=2500 \times(24 \times 25) / 2$
By further calculation
= ₹ 750000
Interest $=$ Maturity value $-x \times$ deposit per month
Substituting the values
$=67500-24 \times 2500$
$=67500-60000$
$=₹ 7500$

We know that
Period $=1$ month $=1 / 12$ year
So the rate of interest $=(\mathrm{SI} \times 100) /(\mathrm{P} \times \mathrm{T})$
Substituting the values
$=(7500 \times 100 \times 12) /(750000 \times 1)$
= 12%
7. Shahrukh opened a Recurring Deposit Account in a bank and deposited ₹ 800 per month for $11 / 2$ years. If he received ₹ 15084 at the time of maturity, find the rate of interest per annum.

Solution:

Amount deposited by Shahrukh per month = ₹ 800
We know that
No. of months $(n)=11 / 2=3 / 2 \times 12=18$ months
We know that
Total principal for one month $=800 \times[x(x+1)] / 2$
Substituting the value of x
$=800 \times(18 \times 19) / 2$
By further calculation
= ₹ 136800
Interest = PRT/ 100
Substituting the values
$=(136800 \times r \times 1) /(100 \times 12)$
So we get
$=114 \mathrm{r}$

So the amount of maturity $=\mathrm{P} \times \mathrm{x}+\mathrm{SI}$
$15084=800 \times 18+114 r$
By further calculation
$114 r=15084-14400$
$114 r=684$
$r=684 / 114=6 \%$
Hence, the rate of interest per annum is 6\%.
8. Rekha opened a recurring deposit account for 20 months. The rate of interest is 9% per annum and Rekha receives ₹ 441 as interest at the time of maturity. Find the amount Rekha deposited each month.

Solution:

Here,
The number of months Rekha deposited (n) $=20$
Rate of interest per annum (r) $=9 \%$
Let the amount deposited by Rekha each month be ₹ x, then $P=₹$ X

Now, we know that

$$
\begin{aligned}
& I=P \times[n(n+1) /(2 \times 12)] \times r / 100 \\
& =x \times[20(20+1) /(2 \times 12)] \times 20 / 100 \\
& =x \times[20(21) /(2 \times 12)] \times 1 / 5 \\
& =x \times[(5 \times 21) / 6)] \times 1 / 5
\end{aligned}
$$

According to given,

$$
441=x \times[(5 \times 21) / 6)] \times 1 / 5
$$

$2205=x \times[(5 \times 21) / 6)]$
$x=(2205 \times 6) /(5 \times 21)$
$x=126$
Hence, the amount deposited by Rekha each month is ₹ 126 .
9. Mohan has a recurring deposit account in a bank for 2 years at 6\% p.a. simple interest. If he gets ₹ 1200 as interest at the time of maturity, find
(i) the monthly installment.
(ii) the amount of maturity.

Solution:

Interest at the time of maturity $=₹ 1200$
Period $(x)=2$ years $=24$ months
Rate of interest $=6 \%$ p.a.
Consider ₹ P p.m. as the monthly deposit
We know that
Interest $=P \times[x(x+1)] /(2 \times 12) \times r / 100$
Substituting the value of x
$1200=(P \times 24 \times 25) / 24 \times 6 / 100$
By further calculation
$1200=6 / 4 \mathrm{P}$
By cross multiplication
$P=(1200 \times 4) / 6=800$
Here monthly deposit $=₹ 800$
So the amount of maturity $=\mathrm{P} \times \mathrm{x}+\mathrm{SI}$
$=800 \times 24+1200$
$=19200+1200$
= ₹ 20400
10. Mr. R. K. Nair gets ₹ 6455 at the end of one year at the rate of 14% per annum in a recurring deposit account. Find the monthly installment.

Solution:

Consider ₹ P as the monthly installment
Period $(x)=1$ year $=12$ months
We know that
Total principal for one month $=P \times[x(x+1)] / 2$
Substituting the value of x
$=P \times(12 \times 13) / 2$
By further calculation
$=78 \mathrm{P}$
Interest = PRT/ 100
Substituting the values
$=(78 \mathrm{P} \times 14 \times 1) /(100 \times 12)$
So we get
$=0.91 \mathrm{P}$
So the amount of maturity $=P \times x+S I$
$6455=P \times 12+0.91 P$
$6455=12.91 P$
By further calculation
$P=6455 / 12.91=₹ 500$
11. Samita has a recurring deposit account in a bank of ₹ 2000 per month at the rate of 10% p.a. If she gets ₹ 83100 at the time of maturity, find the total time for which the account was held.

Solution:

Amount deposited in the account per month = ₹ 2000
Rate of interest $=10 \%$
Consider period $=\mathrm{n}$ months
We know that
Principal for one month $=2000 \times n(n+1) / 2=1000 n(n+1)$
Interest $=[1000 n(n+1) \times 10 \times 1] /[100 \times 12]$
$=[100 n(n+1)] / 12$
So the maturity value $=2000 \times n+[100 n(n+1)] / 12$
Substituting the values
$2000 n+[100 n(n+1)] / 12=83100$
By further calculation
$24000 n+100 n^{2}+100 n=83100 \times 12$
Dividing by 100
$240 n+n^{2}+n=831 \times 12$
$n^{2}+241 n-9972=0$
We can write it as
$n^{2}+277 n-36 n-9972=0$
$n(n+277)-36(n+277)=0$
$(\mathrm{n}+277)(\mathrm{n}-36)=0$

Here $\mathrm{n}+277=0$
So we get
$\mathrm{n}=-277$ which is not possible
Similarly
$\mathrm{n}-36=0$ where $\mathrm{x}=36$
So the period $=36$ months or 3 years
Hence, the total time for which the account was held is 3 years.

Chapter Test

1. Mr. Dhruv deposits ₹ 600 per month in a recurring deposit account for 5 years at the rate of 10% per annum (simple interest). Find the amount he will receive at the time of maturity.

Solution:

It is given that
Amount deposited by Mr. Dhruv = ₹ 600
Rate of interest = 10\% p.a.
Period $(\mathrm{n})=5$ years $=60$ months
We know that
Total principal for one month $=600 \times n(n+1) / 2$
Substituting the value of n
$=600 \times(60 \times 61) / 2$
So we get
= ₹ 1098000
Here Interest = PRT/ 100

Substituting the values
$=(1098000 \times 10 \times 1) /(100 \times 12)$
= ₹ 9150
So the amount of maturity $=600 \times 60+9150$
$=36000+9150$
= ₹ 45150
2. Ankita started paying ₹ 400 per month in a 3 years recurring deposit. After six months her brother Anshul started paying ₹ 500 per month in a $21 / 2$ years recurring deposit. The bank paid 10\% p.a. simple interest for both. At maturity who will get more money and by how much?

Solution:

Case 1 - Ankita
Amount deposited per month $=₹ 400$
Period $(n)=3$ years $=36$ months
Rate of interest $=10 \%$
We know that
Total principal for one month $=400 \times n(n+1) / 2$
Substituting the value of n
$=400 \times(36 \times 37) / 2$
So we get
= ₹ 266400
Here Interest = PRT/ 100
Substituting the values
$=(266400 \times 10 \times 1) /(100 \times 12)$
= ₹ 2220
So the amount of maturity $=400 \times 36+2220$
$=14400+2220$
= ₹ 16620
Case 2 - Anshul
Amount deposited per month $=₹ 500$
Period $(\mathrm{n})=21 / 2$ years $=30$ months
Rate of interest $=10 \%$
We know that
Total principal for one month $=500 \times n(n+1) / 2$
Substituting the value of n
$=500 \times(30 \times 31) / 2$
So we get
= ₹ 232500
Here Interest = PRT/ 100
Substituting the values
$=(232500 \times 10 \times 1) /(100 \times 12)$
$=₹ 1937.50$
So the amount of maturity $=500 \times 30+1937.50$
$=15000+1937.50$
= ₹ 16937.50
We know that at maturity Anshul will get more amount

So the difference $=16937.50-16620=₹ 317.50$
3. Shilpa has a 4 year recurring deposit account in Bank of Maharashtra and deposits ₹ 800 per month. If she gets ₹ 48200 at the time of maturity, find
(i) the rate of simple interest,
(ii) the total interest earned by Shilpa

Solution:

It is given that
Amount deposited per month $(P)=₹ 800$
Amount of maturity $=₹ 48200$
Period $(\mathrm{n})=4$ years $=48$ months
Consider R\% p.a. as the rate of interest
We know that
Total principal for one month $=800 \times n(n+1) / 2$
Substituting the value of n
$=800 \times(48 \times 49) / 2$
So we get
$=₹ 940800$
Here the total deposit $=800 \times 48=₹ 38400$
Amount of maturity $=₹ 48200$
So the interest earned $=48200-38400=₹ 9800$
(i) Rate of interest $=(\mathrm{SI} \times 100) /(\mathrm{P} \times \mathrm{T})$

Substituting the values
$=(9800 \times 100 \times 12) /(940800 \times 1)$

$$
=12.5 \%
$$

(ii) Total interest earned by Shilpa $=₹ 9800$
4. Mr. Chaturvedi has a recurring deposit account in Grindlay's Bank for $41 / 2$ years at 11% p.a. (simple interest). If he gets Rs 101418.75 at the time of maturity, find the monthly installment.

Solution:

Consider ₹ x as the each monthly installment
Rate of interest $=11 \%$
Period $(n)=41 / 2$ years $=54$ months
We know that
Total principal for one month $=x \times n(n+1) / 2$
Substituting the value of n
$=x \times(54 \times 55) / 2$
So we get
$=1485 \mathrm{x}$
Here Interest = PRT/ 100
Substituting the values
$=(1485 x \times 11 \times 1) /(100 \times 12)$
$=13.6125 x$
So the amount of maturity $=54 x+13.6125 x$
$=67.6125 x$
By equating the value
$67.6125 x=101418.75$
$x=101418.75 / 67.6125=₹ 1500$

Hence, the deposit per month is ₹ 1500 .
5. Rajiv Bhardwaj has a recurring deposit account in a bank of ₹ 600 per month. If the bank pays simple interest of 7% p.a. and he gets ₹ 15450 as maturity amount, find the total time for which the account was held.

Solution:

It is given that
Amount deposited per month (P) = ₹ 600
Rate of interest $=7 \%$ p.a.
Amount of maturity $=₹ 15450$
Consider n months as the period
We know that
Total principal for one month $=600 \times n(n+1) / 2$
By further calculation
$=600\left(n^{2}+n\right) / 2$
$=300\left(n^{2}+n\right)$
Here Interest = PRT/ 100
Substituting the values
$=\left(300\left(n^{2}+1\right) \times 7 \times 1\right) /(100 \times 12)$
$=7 / 4\left(n^{2}+n\right)$
Amount of maturity $=600 n+7 / 4\left(n^{2}+n\right)$
Substituting the values
$600 n+7 / 4\left(n^{2}+n\right)=15450$
By further calculation
$2400+7 n^{2}+7 n=61800$
$7 n^{2}+2407 n-61800=0$
We can write it as
$7 n^{2}-168 n+2575 n-61800=0$
$7 n(n-24)+2575(n-24)=0$
$(n-4)(7 n+2575)=0$
Here n - $24=0$ where $\mathrm{n}=24$
Similarly
$7 n+2575=0$
Where $7 n=-2575$
$\mathrm{n}=-2575 / 7$ which is not possible as it is negative
Period (n) $=24$ months or 2 years

